Seminarsonly.Com

Custom Search

>>

 

Are you interested in this topic.Then mail to us immediately to get the full report.

email :- contactv2@gmail.com

 

 

 

 

 

 

 

 

 

 
Plasma Antennas

 

Definition
Plasma antennas are radio frequency antennas that employ plasma as the guiding medium for electromagnetic radiation.

The concept is to use plasma discharge tubes as the antenna elements. When the tubes are energized, they become conductors, and can transmit and receive radio signals. When they are de-energised, they revert to non-conducting elements and do not reflect probing radio signals. Plasma antenna can be "Steered" electronically. Another feature of the plasma antenna is that it can be turned off rapidly, reducing ringing on pulse transmission.On earth we live upon an island of "ordinary" matter. The different states of matter generally found on earth are solid, liquid, and gas. Sir William Crookes, an English physicist identified a fourth state of matter, now called plasma, in 1879. Plasma is by far the most common form of matter. Plasma in the stars and in the tenuous space between them makes up over 99% of the visible universe and perhaps most of that which is not visible. Important to ASI's technology, plasmas are conductive assemblies of charged and neutral particles and fields that exhibit collective effects. Plasmas carry electrical currents and generate magnetic fields.

When the Plasma Antenna Research Laboratory at ANU investigated the feasibility of plasma antennas as low radar cross-section radiating elements, Redcentre established a network between DSTO ANU researchers, CEA Technologies, Cantec Australasia and Neolite Neon for further development and future commercialization of this technology. The plasma antenna R & D project has proceeded over the last year at the Australian National University in response to a DSTO (Defence Science and Technology Organisation) contract to develop a new antenna solution that minimizes antenna detectability by radar. Since then, an investigation of the wider technical issues of existing antenna systems has revealed areas where plasma antennas might be useful. The project attracts the interest of the industrial groups involved in such diverse areas as fluorescent lighting, telecommunications and radar. Plasma antennas have a number of potential advantages for antenna design.

When a plasma element is not energized, it is difficult to detect by radar. Even when it is energized, it is transparent to the transmissions above the plasma frequency, which falls in the microwave region. Plasma elements can be energized and de-energized in seconds, which prevents signal degradation. When a particular plasma element is not energized, its radiation does not affect nearby elements. HF CDMA Plasma antennas will have low probability of intercept( LP) and low probability of detection( LPD ) in HF communications.

 

Plasma Antenna Technology
Since the discovery of radio frequency ("RF") transmission, antenna design has been an integral part of virtually every communication and radar application. Technology has advanced to provide unique antenna designs for applications ranging from general broadcast of radio frequency signals for public use to complex weapon systems. In its most common form, an antenna represents a conducting metal surface that is sized to emit radiation at one or more selected frequencies.

Antennas must be efficient so the maximum amount of signal strength is expended in the propogated wave and not wasted in antenna reflection.
Plasma antenna technology employs ionized gas enclosed in a tube (or other enclosure) as the conducting element of an antenna.


 

Related Seminars

Ovonic Unified Memory
Paper Battery
Passive Millimeter-Wave
Pervasive Computing
PH Control Technique using Fuzzy Logic
Photovoltaic
Pivot Vector Space Approach in Audio-Video Mixing
Plasma Antennas
Plasma Display
PLEDS
Poly Fuse

 

<<Back To Electronics Seminars


copyright © 2006 V2 Computers E-mail :- contactv2@gmail.com