Seminarsonly.Com

Custom Search

>>

 

Are you interested in this topic.Then mail to us immediately to get the full report.

email :- contactv2@gmail.com

 

 

 

Custom Search

 

 

 

 

 

 

 

 

Humanoid Robot : Seminar Report and PPT

 

Definition

The field of humanoids robotics, widely recognized as the current challenge for robotics research, is attracting the interest of many research groups worldwide. Important efforts have been devoted to the objective of developing humanoids and impressive results have been produced, from the technological point of view, especially for the problem of biped walking.

In Japan , important humanoid projects, started in the last decade, have been carried on by the Waseda University and by Honda Motor Co.

The Humanoid Project of the Waseda University, started in 1992, is a joint project of industry, government and academia, aiming at developing robots which support humans in the field of health care and industry during their life and that share with human information and behavioral space, so that particular attention have been posed to the problem of human-computer interaction. Within the Humanoid Project, the Waseda University developed three humanoid robots, as research platforms, namely Hadaly 2,Wabian and Wendy.

Impressive results have been also obtained by Honda Motor Co. Ltd with P2 and P3, self-contained humanoid robots with two arms and two legs, able to walk, to turn while walking, to climb up and down stairs. These laboratories on their humanoid robots carry on studies on human-robot interaction, on human-like movements and behavior and on brain mechanics of human cognition and sensory-motor learning

KINEMATIC ARCHITECTURE:

A first analysis based on the kinematics characteristics of the human hand, during grasping tasks, led us to approach the mechanical design with a multi-DOF hand structure. Index and middle finger are equipped with active DOF respectively in the MP and in the PIP joints, while the DIP joint is actuated by one driven passive DOF.

The thumb movements are accomplished with two active DOF in the MP joint and one driven passive DOF in the IP joint. This configuration will permit to oppose the thumb to each finger.

THE VISION SYSTEM:

The use of MEP tracking system is made to implement the facial gesture interface. This vision system is manufactured by Fujitsu and is designed to track in real time multiple templates in frames of a NTSC video stream. It consists of two VME-bus cards, a video module and tracking module, which can track up to 100 templates simultaneously at video frame rate (30Hz for NTSC).

The tracking of objects is based on template (8x8 or 16x16 pixels) comparison in a specified search area. The video module digitizes the video input stream and stores the digital images into dedicated video RAM. The tracking module also accesses this RAM. The tracking module compares the digitized frame with the tracking templates within the bounds of the search windows.

 

To track a template of an object it is necessary to calculate the distortion not only at one point in the image but at a number of points within the search window. To track the movement of an object the tracking module finds the position in the image frame where the template matches with the lowest distortion. A vector to the origin of the lowest distortion represents the motion. By moving the search window along the axis of the motion vector objects can be easily tracked. The tracking module performs up to 256 cross correlations per template within a search window.


You might also like the below seminar topics

HTAM
Hurd
Hyper Transport Technology
Gi-Fi
Fiber Channel
EDGE
Elastic Quotas
Ethical Hacking
Face Recognition Technology
Development of the Internet
Digital Subscriber Line (DSL)

<<back


copyright © 2006 V2 Computers E-mail :- contactv2@gmail.com