Page 1 of 1

Artificial Muscles

PostPosted: Mon Sep 09, 2013 6:11 am
by Prasanth

Artificial Muscles

For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP) may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, there is a series of international forums that are leading to a growing number of research and development projects and to great advances in the field.. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

The evolution of artificial muscles in robotics

The introduction of the wheel has been one of the most important inventions that human made allowing to travel great distances and perform tasks that would have been otherwise impossible within the life time of a single human being. While wheel based locomotion mechanisms allow reaching great distances and speeds, wheeled vehicles are subjected to great limitations with regards to traversing complex terrain with obstacles. Obviously, legged creatures can perform numerous functions that are far beyond the capability of an automobile. Producing legged robots is increasingly becoming an objective for robotic developers and considerations of using such robots for space applications are currently underway.

Making miniature devices that can fly like a dragonfly; adhere to walls like gecko; adapt the texture, patterns, and shape of the surrounding as the octopus (can reconfigure its body to pass thru very narrow tubing); process complex 3D images in real time; recycle mobility power for highly efficient operation and locomotion; self-replicate; self-grow using surrounding resources; chemically generate and store energy; and many other capabilities are some of the areas that biology offers as a model for science and engineering inspiration. While many aspects of biology are still beyond our understanding and capability, significant progress has been made and the field of biomimetics is continuing to evolve.

The evolution in the capabilities that are inspired by biology has increased to a level where more sophisticated and demanding fields, such as space science, are considering the use of such robots. At JPL, four and six legged robots are currently being developed for consideration in future missions to such planets as Mars. Such robots include the LEMUR (Limbed Excursion Mobile Utility Robot). This type of robot would potentially perform mobility in complex terrains, perform sample acquisition and analysis, and many other functions that are attributed to legged animals including grasping and object manipulation.

This evolution may potentially lead to the use of life-like robots in future NASA missions that involve landing on various to planets. The details of such future missions will be designed as a plot, commonly used in entertainment shows rather than conventional mission plans of a rover moving in a terrain and performing simple autonomous tasks. Equipped with multi-functional tools and multiple cameras, the LEMUR robots are intended to inspect and maintain installations beyond humanity's easy reach in space. This spider looking robot has 6 legs, each of which has interchangeable end-effectors to perform the required mission. The axis-symmetric layout is a lot like a starfish or octopus, and it has a panning camera system that allows omni-directional movement and manipulation operation.

EAP as Artificial Muscles

One of the key aspects of driving mechanisms that emulate biology is the development of actuators that mimic the capability of biological muscles. The potential for such actuators is continuously growing as advances are being made leading to more effective electro active polymers (EAP). These materials have functional similarities to biological muscles, including resilience, quiet operation, damage tolerance, and large actuation strains (stretching, contracting or bending). They can potentially provide more lifelike aesthetics, vibration and shock dampening, and more flexible actuator configurations.