Seminar Topics

www.seminarsonly.com

IEEE Seminar Topics

Bioinformatics


Published on Nov 30, 2023

Abstract

Rapid advances in bioinformatics are providing new hopes to patients of life threatening diseases. Gene chips will be able to screen heart attack and diabetics years before patients develop symptoms. In near future, patients will go to a doctor's clinic with lab- on- a- chip devices. The device will inform the doctor in real time if the patient's ailment will respond to a drug based on his DNA.

These will help doctors diagnose life-threatening illness faster, eliminating expensive, time-consuming ordeals like biopsies and sigmoidoscopies. Gene chips reclassify diseases based on their underlying molecular signals, rather than misleading surface symptoms. The chip would also confirm the patient's identity and even establish paternity.

Bioinformatics is an inter disciplinary research area. It is a fusion of computing, biotechnology and biological sciences. Bioinformatics is poised to one of the most prodigious growth areas in the next to decades. Being the interface between the most rapidly advancing fields of biological and computational sciences, it is immense in scope and vast in applications.

Bioinformatics is the study of biological information as it passes from its storage site in the genome to the various gene products in the cell. Bioinformatics involves the creation and computational technologies for problems in molecular biology. As such ,it deals with methods for storing, retrieving and analyzing biological data, such as nuclei acid (DNA/RNA)and protein sequence, structures, functions, path ways and interactions. The science of Bioinformatics, which is the melding of molecular biology with computer science is essential to the use of genomic information in understanding human diseases and in the identification of new molecular targets of drug discovery.

New discoveries are being made in the field of genomics, an area of study which looks at the DNA sequence of an organism in order to determine which genes code for beneficial traits and which genes are involved in inherited diseases.If you are not tall enough, the stature could be altered accordingly. If you are weak and not strong enough, your physique could be improved. If you think this is the script for a science fiction movie, you are mistaken. It is the future reality.

Evolution Of Bioinformatics

DNA is the genetic material of organism. It contains all the information needed for the development and existence of an organism. The DNA molecule is formed of two long polynucleotide chains which are spirally coiled on each other forming a double helix. Thus it has the form of spirally twisted ladder. DNA is a molecule made from sugar, phosphate and bases.

The bases are guanine (G), cytosine(C)adenine(A) and thiamine(T).Adenine pairs only with Thiamine and Guanine pairs only with Cytosine. The various combinations of these bases make up with DNA. That is; AAGCT, CCAGT, TACGGT etc. An infinite number of combinations of these bases is possible. And then the gene is a sequence of DNA that represents a fundamental unit of heredity. Human genome consists of approximately 30,000 genes, containing approximately 3 billion base pairs.

BIOCHIP

Biochip is an IC who’s electrical and logical functions are performed by protein molecules appropriately manipulated. Advances in molecular biology and semiconductor fabrication have resulted in new formats for hybridization arrays. Instead of these being based on a membrane or a glass slide platforms these arrays several electrodes covered by a thin layer of agarose coupled with affinity moiety. Each micro electrode is capable of generating a controllable electric current that can be used to draw biological samples, reagents and probes to specify locations on the chip surface. The number of genes covered by these arrays depends on the number of electrodes made within the area of that array.

Biochips can be mainly classified into two based on the applications:

1. Internal biochips

2. External biochips

Applications of internal biochips are

1. Glucose measurement

2. Brain surgery for Parkinson’s disease

3. Cochlear implant

4. Eye implant

5. Personal identification

Applications of external biochips are

1. lab on a chip

2. mass spectrometry











Are you interested in this topic.Then mail to us immediately to get the full report.

email :- contactv2@gmail.com

Related Seminar Topics