Dear Guest, Please Register to Download Free Seminar Reports and PPT of each topic. The Download link will be visible only after the registration.Please search the topic before posting.

Please click the Facebook Like Button if you are satisfied

 Subscribe To Get Latest Seminar Reports and PPT

Receive all seminar updates via Facebook. Just Click the Like Button Below


Custom Search


Huge Collection of Mechanical Seminar Topics, Reports and PPT.


Postby Prasanth » Thu Dec 15, 2011 7:00 pm

What is a scramjet?

In a conventional ramjet, the incoming supersonic airflow is slowed to subsonic speeds by multiple shock waves, created by back-pressuring the engine. Fuel is added to the subsonic airflow, the mixture combusts, and exhaust gases accelerate through a narrow throat, or mechanical choke, to supersonic speeds. By contrast, the airflow in a pure scramjet remains supersonic throughout the combustion process and does not require a choking mechanism, which provides optimal performance over a wider operating range of Mach numbers. Modern scramjet engines can function as both a ramjet and scramjet and seamlessly make the transition between the two

About the Engine

The scramjet provides the most integrated engine-vehicle design for aircraft and missiles. The engine occupies the entire lower surface of the vehicle body. The propulsion system consists of five major engine and two vehicle components: the internal inlet, isolator, combustor, internal nozzle, and fuel supply subsystem, and the craft's forebody, essential for air induction, and aftbody, which is a critical part of the nozzle component.

The high-speed air-induction system consists of the vehicle forebody and internal inlet, which capture and compress air for processing by the engine's other components. Unlike jet engines, vehicles flying at high supersonic or hypersonic speeds can achieve adequate compression without a mechanical compressor. The forebody provides the initial compression, and the internal inlet provides the final compression. The air undergoes a reduction in Mach number and an increase in pressure and temperature as it passes through shock waves at the forebody and internal inlet.

The isolator in a scramjet is a critical component. It allows a supersonic flow to adjust to a static back-pressure higher than the inlet static pressure. When the combustion process begins to separate the boundary layer, a precombustion shock forms in the isolator. The isolator also enables the combustor to achieve the required heat release and handle the induced rise in combustor pressure without creating a condition called inlet unstart, in which shock waves prevent airflow from entering the isolator.
The combustor accepts the airflow and provides efficient fuel-air mixing at several points along its length, which optimizes engine thrust.
You do not have the required permissions to download the files attached to this post. You must LOGIN or REGISTER to download these files.
User avatar
Site Admin
Posts: 475
Joined: Sat May 28, 2011 6:29 pm

Return to Mechanical Seminar Topics