Dear Guest, Please Register to Download Free Seminar Reports and PPT of each topic. The Download link will be visible only after the registration.Please search the topic before posting.

Please click the Facebook Like Button if you are satisfied

 Subscribe To Get Latest Seminar Reports and PPT

Receive all seminar updates via Facebook. Just Click the Like Button Below

?

Custom Search

Burj Khalifa

Access the latest Civil Engineering Seminar Topics, Reports and PPT

Burj Khalifa

Postby Prasanth » Thu Dec 29, 2011 6:52 pm

Burj Khalifa (Arabic: برج خليفة‎ "Khalifa Tower"), known as Burj Dubai prior to its inauguration, is a skyscraper in Dubai, United Arab Emirates, and is currently the tallest structure in the world, at 828 m (2,717 ft). Construction began on 21 September 2004, with the exterior of the structure completed on 1 October 2009. The building officially opened on 4 January 2010. The building is part of the new 2 km2 (490-acre) flagship development called Downtown Dubai at the 'First Interchange' along Sheikh Zayed Road, near Dubai's main business district. The tower's architecture and engineering were performed by Skidmore, Owings and Merrill of Chicago, with Adrian Smith as chief architect, and Bill Baker as chief structural engineer. The primary contractor was Samsung C&T of South Korea.The total cost for the project was about US$1.5 billion; and for the entire "Downtown Dubai" development, US$20 billion.

Structural Elements — Elevators, Spire, and More

It is an understatement to say that Burj Khalifa represents the state-of-the-art in building design. From initial concept through completion, a combination of several important technological innovations and innovation structural design methods have resulted in a superstructure that is both efficient and robust.

a) Foundation
The superstructure is supported by a large reinforced concrete mat, which is in turn supported by bored reinforced concrete piles. The design was based on extensive geotechnical and seismic studies. The mat is 3.7 meters thick, and was constructed in four separate pours totaling 12,500 cubic meters of concrete. The 1.5 meter diameter x 43 meter long piles represent the largest and longest piles conventionally available in the region. A high density, low permeability concrete was used in the foundations, as well as a cathodic protection system under the mat, to minimize any detrimental effects form corrosive chemicals in local ground water.
b) Podium
The podium provides a base anchoring the tower to the ground, allowing on grade access from three different sides to three different levels of the building. Fully glazed entry pavilions constructed with a suspended cable-net structure provide separate entries for the Corporate Suites at B1 and Concourse Levels, the Burj Khalifa residences at Ground Level and the Armani Hotel at Level 1.

c) Exterior Cladding
The exterior cladding is comprised of reflective glazing with aluminum and textured stainless steel spandrel panels and stainless steel vertical tubular fins. Close to 26,000 glass panels, each individually hand-cut, were used in the exterior cladding of Burj Khalifa. Over 300 cladding specialists from China were brought in for the cladding work on the tower. The cladding system is designed to withstand Dubai's extreme summer heat, and to further ensure its integrity, a World War II airplane engine was used for dynamic wind and water testing. The curtain wall of Burj Khalifa is equivalent to 17 football (soccer) fields or 25 American football fields.

d) Structural System
In addition to its aesthetic and functional advantages, the spiraling “Y” shaped plan was utilized to shape the structural core of Burj Khalifa. This design helps to reduce the wind forces on the tower, as well as to keep the structure simple and foster constructability. The structural system can be described as a “buttressed core”, and consists of high performance concrete wall construction. Each of the wings buttress the others via a six-sided central core, or hexagonal hub. This central core provides the torsional resistance of the structure, similar to a closed pipe or axle. Corridor walls extend from the central core to near the end of each wing, terminating in thickened hammer head walls. These corridor walls and hammerhead walls behave similar to the webs and flanges of a beam to resist the wind shears and moments. Perimeter columns and flat plate floor construction complete the system. At mechanical floors, outrigger walls are provided to link the perimeter columns to the interior wall system, allowing the perimeter columns to participate in the lateral load resistance of the structure; hence, all of the vertical concrete is utilized to support both gravity and lateral loads. The result is a tower that is extremely stiff laterally and torsionally. It is also a very efficient structure in that the gravity load resisting system has been utilized so as to maximize its use in resisting lateral loads.

Spire
The crowning touch of Burj Khalifa is its telescopic spire comprised of more than 4,000 tons of structural steel. The spire was constructed from inside the building and jacked to its full height of over 200 metres (700 feet) using a hydraulic pump. In addition to securing Burj Khalifa's place as the world's tallest structure, the spire is integral to the overall design, creating a sense of completion for the landmark. The spire also houses communications equipment.

f) Mechanical Floors
Seven double-storey height mechanical floors house the equipment that bring Burj Khalifa to life. Distributed around every 30 storeys, the mechanical floors house the electrical sub-stations, water tanks and pumps, air-handling units etc, that are essential for the operation of the tower and the comfort of its occupants.

g) Window Washing Bays
Access for the tower's exterior for both window washing and façade maintenance is provided by 18 permanently installed track and fixed telescopic, cradle equipped, building maintenance units. The track mounted units are stored in garages, within the structure, and are not visible when not in use. The manned cradles are capable of accessing the entire facade from tower top down to level seven. The building maintenance units jib arms, when fully extended will have a maximum reach of 36 meters with an overall length of approximately 45 meters. When fully retracted, to parked position, the jib arm length will measure approximately 15 meters. Under normal conditions, with all building maintenance units in operation, it will take three to four months to clean the entire exterior facade.

h) Broadcast and Communications Floors
The top four floors have been reserved for communications and broadcasting. These floors occupy the levels just below the spire.

i) Mechanical, Electrical & Plumbing
To achieve the greatest efficiencies, the mechanical, electrical and plumbing services for Burj Khalifa were developed in coordination during the design phase with cooperation of the architect, structural engineer and other consultant.
•The tower's water system supplies an average of 946,000 litres (250,000 gallons) of water daily
User avatar
Prasanth
Site Admin
 
Posts: 475
Joined: Sat May 28, 2011 6:29 pm


Return to Civil Engineering Seminar Topics