Seminarsonly.Com

Custom Search

>>

Are you interested in this topic. Then mail to us immediately to get the full report.

E-mail :- contactv2@gmail.com

______________________________


 

 

 

 

 

 

 

 

 

 

 

 

 
Micro Electronic Pill


The invention of transistor enabled the first use of radiometry capsules, which used simple circuits for the internal study of the gastro-intestinal (GI) [1] tract. They couldn't be used as they could transmit only from a single channel and also due to the size of the components. They also suffered from poor reliability, low sensitivity and short lifetimes of the devices. This led to the application of single-channel telemetry capsules for the detection of disease and abnormalities in the GI tract where restricted area prevented the use of traditional endoscopy.

They were later modified as they had the disadvantage of using laboratory type sensors such as the glass pH electrodes, resistance thermometers, etc. They were also of very large size. The later modification is similar to the above instrument but is smaller in size due to the application of existing semiconductor fabrication technologies. These technologies led to the formation of "MICROELECTRONIC PILL".

Microelectronic pill is basically a multichannel sensor used for remote biomedical measurements using micro technology. This is used for the real-time measurement parameters such as temperature, pH, conductivity and dissolved oxygen. The sensors are fabricated using electron beam and photolithographic pattern integration and were controlled by an application specific integrated circuit (ASIC).


BLOCK DIAGRAM

Microelectronic pill consists of 4 sensors (2) which are mounted on two silicon chips (Chip 1 & 2), a control chip (5), a radio transmitter (STD- type 1-7, type2-crystal type-10) & silver oxide batteries (8).
1-access channel, 3-capsule, 4- rubber ring, 6-PCB chip carrier

BASIC COMPONENTS

A. Sensors

There are basically 4 sensors mounted on two chips- Chip 1 & chip 2. On chip 1(shown in fig 2 a), c), e)), temperature sensor silicon diode (4), pH ISFET sensor (1) and dual electrode conductivity sensor (3) are fabricated. Chip 2 comprises of three electrode electrochemical cell oxygen sensor (2) and optional NiCr resistance thermometer.

1) Sensor chip 1:

An array consisting of both temperature sensor & pH sensor platforms were cut from the wafer & attached onto 100-µm- thick glass cover slip cured on a hot plate. The plate acts as a temporary carrier to assist handling of the device during level 1 of lithography when the electric connections tracks, electrodes bonding pads are defined. Bonding pads provide electrical contact to the external electronic circuit.

See Full Report

To Download Full Report Click Here

Related Seminars

Lightning Protection Using LFA-M
Line-Reflect-Reflect Technique
Low Energy Efficient Wireless Communication Network Design
Low Memory Color Image Zero Tree Coding
Low Power UART Design for Serial Data Communication
Low-Voltage Differential Signaling (LVDS)
Lunar Reconnaissance Orbiter
LWIP
Magneto-optical current transformer technology
Memristor
Mesh Radio

<<Back To Electronics Seminars


copyright © 2006 V2 Computers E-mail :- contactv2@gmail.com